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ABSTRACT

The attenuation-based rainfall estimator is less sensitive to the variability of raindrop size distributions

(DSDs) than conventional radar rainfall estimators. For the attenuation-based quantitative precipitation

estimation (QPE), the key is to accurately estimate the horizontal specific attenuation AH, which requires a

good estimate of the ray-averaged ratio between AH and specific differential phase KDP, also known as the

coefficienta. In this study, a variational approach is proposed to optimize the coefficient a for better estimates

of AH and rainfall. The performance of the variational approach is illustrated using observations from an

S-band operational weather radar with rigorous quality control in south China, by comparing against the

a optimization approach using a slope of differential reflectivity ZDR dependence on horizontal reflectivity

factorZH. Similar to the ZDR-slope approach, the variational approach can obtain the optimized a consistent

with the DSD properties of precipitation on a sweep-to-sweep basis. The attenuation-based hourly rainfall

estimates using the sweep-averaged a values from these two approaches show comparable accuracy when

verified against the gauge measurements. One advantage of the variational approach is its feasibility to op-

timize a for each radar ray, which mitigates the impact of the azimuthal DSD variabilities on rainfall esti-

mation. It is found that, based on the optimized a for radar rays, the hourly rainfall amounts derived from the

variational approach are consistent with gauge measurements, showing lower bias (1.0%), higher correlation

coefficient (0.92), and lower root-mean-square error (2.35mm) than the results based on the sweep-

averaged a.

1. Introduction

Quantitative precipitation estimation (QPE) is one of

the major missions in radar meteorology (Bringi and

Chandrasekar 2001; Zhang et al. 2016). The uncertainty

in the raindrop size distributions (DSDs) of precipita-

tion and radar measurement errors are two major error

sources for radar QPE (Lee 2006). For conventional

weather radars without polarimetric capability, QPE

is achieved by assuming power-law relations between

rainfall rateR and reflectivity factorZ, i.e.,Z–R relations

(Marshall and Palmer 1948), which may suffer a lot from

the DSD variabilities. After the polarimetric upgrade,

weather radars canmeasure differential reflectivity factor

ZDR and specific differential phase shift KDP/differential

phase shift FDP in addition to the horizontal reflectivity

factor ZH. By including ZDR and KDP in the power-law

estimators, e.g., R(ZH, ZDR), R(KDP), and R(KDP, ZDR),

the rainfall estimation will be less sensitive to the DSD

uncertainty (Bringi et al. 2011; Chen et al. 2017; Ryzhkov

et al. 2005a,b). By combining the polarimetric rainfall

estimators and conventional R(Z) estimators according

to their error structures in terms of DSD variabilities

and measurement errors, the QPE performance can be

further improved (Ryzhkov et al. 2005a,b).

Recently, the relation between R and specific atten-

uation A is utilized for QPE (Diederich et al. 2015;

Ryzhkov et al. 2014; Wang et al. 2014). As documentedCorresponding author: Kun Zhao, zhaokun@nju.edu.cn
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in Ryzhkov et al. (2014), the R(A) estimator is less

sensitive to DSD variabilities than R(Z) and R(KDP)

estimators at S, C, and X bands. For attenuation-based

QPE, the key factor is to estimate A accurately. In their

work, A is estimated using the rain profiling algorithm

called ‘‘ZPHI’’ from the attenuated Z and the given

total path integrated attenuation (PIA) (Testud et al.

2000). One of the ZPHI algorithm’s advantages is its

immunity to the miscalibration of Z. However, the ac-

curacy of the A estimated by the ZPHI algorithm

heavily depends on the accuracy of the PIA. In theZPHI

algorithm, the PIA is calculated from DFDP multiplied

by a coefficient a, where DFDP is the change of differ-

ential phase shift over the propagation path and the

coefficient a is the mean ratio of A to KDP. In the ZPHI

attenuation estimation algorithm (Ryzhkov et al. 2014;

Testud et al. 2000), a fixed a is utilized. However, a is

sensitive to the DSD variabilities and environmental

temperature, which limits the accuracy of the ZPHI al-

gorithm. The ZPHI algorithm is extended by adjusting

a through minimizing the difference between the mea-

sured FDP and reconstructed FDP from retrieved A

(Bringi et al. 2001). However, since the coefficient a is

sensitive to DSD variabilities, the constructed FDP may

also lack precision (Gou et al. 2019; Gu et al. 2011;

Ryzhkov et al. 2014). Gu et al. (2011) and Carey et al.

(2000) tried to correct attenuation using the hot spot

(HS) technique by adjusting the a values for the pre-

cipitation within the hot spot regions which usually have

larger ZDR values. This technique can mitigate the im-

pact of DSD variabilities on attenuation correction but

still suffer from the uncertainties to some degree. For

example, the identification of the HS regions is not easy

especially for radar rays with multiple HS regions. In

addition, only two discrete a values are used for pre-

cipitation within and beyond the HS regions, but the

actual a values usually have a higher spatial variance.

The DSD characteristics significantly vary for differ-

ent rain types (e.g., tropical and continental rainfall).

Thus, a slope of the ZDR dependence on ZH in rain,

which is an indicator of rain type, was used to optimize

a on a sweep-to-sweep basis for attenuation-based QPE

(Cocks et al. 2019; Ryzhkov and Zrnić 2019; Wang et al.

2019). This method is generally immune to the system

biases inZH andZDR. And the optimized a values result

in better rainfall estimates than a fixed a in their as-

sessment (Cocks et al. 2019; Wang et al. 2019), making it

promising for operational applications. Nevertheless,

limitations exist in this method too, according to Wang

et al. (2019). First, this method derives a single a value

for a whole radar sweep. However, the DSD properties,

especially the mean raindrop size, vary in different regions

of a radar sweep. Using a single a value may introduce

underestimation (overestimation) of rainfall for the echoes

with small (large) mean raindrop size. On the other hand,

to optimize an a value from the ZDR slope, this method

requires a large number of valid rainfall samples; the

threshold is 30 000 inWang et al. (2019). If a radar sweep

does not have a sufficient number of valid samples, a

default or recently updated a value is used until a suf-

ficient number of samples is accumulated. This strategy

mitigates the impact of measurement errors and the

skewed distribution of the ZH–ZDR pairs; however, this

may enlarge the impact of the DSD variability for the

sweeps without enough samples.

Considering the potential differences in DSD char-

acteristics in different regions of a radar sweep, one may

improve the performance of attenuation-based QPE if a

radar sweep is segmented into subregions with different

a values used for them. In our paper, this possibility

is investigated using a variational algorithm. In this al-

gorithm, the propagation effect (attenuation and phase

shift) is considered in the forward operator and opti-

mized when minimizing a cost function; the horizontal

specific attenuation AH, differential attenuation ADP,

and KDP are parameterized using ZH and ZDR. After

estimating attenuation using the variational approach,

the optimized coefficient a are derived for QPE based

on R(A) estimators, in which the azimuthal variabilities

of a are considered. The paper is organized as follows.

The dataset used for this study and the relevant approaches

for attenuation estimation and QPE are introduced in

section 2. In section 3, the measurements of an opera-

tional radar and surrounding gauges in south China are

used to evaluate the proposed algorithm. Conclusions

and discussions are given in section 4.

2. Data and methods

a. Dataset

Influenced by theEastAsian summermonsoon, heavy

rainfall usually occurs in south China fromMay to June,

causing enormous calamity (Luo et al. 2017). Since 2016,

the Chinese operational radar network in south China

has been gradually upgraded with polarimetric capa-

bility. As part of the operational radar network, the

S-band polarimetric radar in Guangzhou City, i.e., GZ

SPOL, has been proved to have good performance and

flexibility for scientific studies (Huang et al. 2018; Wu

et al. 2018). Therefore, GZ SPOL is used in this paper as

the prototype for algorithm validation. Accordingly, all

the retrieval models in the paper are constructed based

on the DSD data collected from a two-dimensional video

disdrometer (2DVD) in south China inMay–July in 2016

and 2017. The location of GZSPOL and the 2DVD can
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be found in Fig. 1 of Huang et al. (2018). In the con-

struction of the algorithms, polarimetric variables and R

are calculated from the DSD data according to formulas

in Cao et al. (2012), with the scattering amplitudes esti-

mated using the T-matrix method (Mishchenko et al.

2000). The axis ratios and terminal velocities of raindrops

are parameterized from raindrop diameters following

Brandes et al. (2002). In the QPE evaluation, the al-

gorithms are mainly applied to the GZ SPOL mea-

surements in precipitation events during May and

June 2016; the radar scans at 1.58 elevation angle are

used. These radar-derived rainfall rates are tempo-

rally integrated and compared against the accumu-

lated rainfall measured by gauges within the distance

of 75 km from the radar, in which the gauge data are

quality controlled using a speckle filter described in

Huang et al. (2018).

In the variational approach, the quality of polarimetric

radar data is crucial for its success. The quality control

procedures are similar to those in Huang et al. (2018)

and are listed below. For GZ SPOL, the reflectivity is

calibrated by an internal system using generated test

signals and the system is annually maintained, which

guarantees the ZH precision to be within 1 dB (Chen

et al. 2014). Then, to mitigate the impact of the non-

meteorological echoes on the retrieval, the data with

the copolar correlation coefficient rhv lower than 0.85

are removed. The remaining echoes having less than

20 consecutive range gates are also removed. The dif-

ferential reflectivity ZDR is calibrated by monitoring

the echo with ZH between 10 and 20 dBZ, for which the

averaged intrinsic ZDR value is 0.14 dB according to

DSD statistics. In the processing of FDP, the system

bias is estimated from the statistics of theFDP values of

themeteorological echo close to the radar site using the

method in Maesaka et al. (2012). Then, the FDP mea-

surements with the differences from the values at the

neighboring range gates greater than 358 are removed

and refilled by linear interpolation after unfolding.

After the quality control, the random errors of ZH,

ZDR, and FDP are assumed to be 1 dBZ, 0.2 dB, and

2.08, respectively, according to the specifications of GZ

SPOL (Huang et al. 2018).

b. Review of attenuation-based QPE

In Ryzhkov et al. (2014), attenuation is estimated

using the ZPHI algorithm before QPE. The ZPHI

algorithm was originally designed for spaceborne rain

radar of the Tropical Rainfall Measuring Mission

(TRMM). It was then applied to ground-based polari-

metric radars by Testud et al. (2000) and has been uti-

lized in many studies (Bringi et al. 2001; Gou et al. 2019;

Gu et al. 2011; Ryzhkov et al. 2014). To derive the ZPHI

algorithm,AH is assumed to be related to the horizontal

reflectivity factor by

A
H
(r)5 a(r)[Z

h
(r)]b , (1)

where Zh is the horizontal reflectivity factor (mm6m23).

Parameter b is nearly constant for GZ SPOL (b5 0.65)

according to the scattering simulation using the DSD

data. With a(r) assumed to be constant along each radar

beam, the AH profile for the path between r0 and r1 can

be estimated using the measured (i.e., attenuated) re-

flectivity factor Za and the corresponding total PIA,

following

A
H
(r)5

[Z
a
(r)]b(e0:23bPIA 2 1)

I(r
0
, r

1
)1 I(r, r

1
)(e0:23bPIA 2 1)

, (2)

where

I(r
0
, r

1
)5 0:46 b

ðr1
r0

[Z
a
(s)]b ds , (3)

and

I(r, r
1
)5 0:46b

ðr1
r

[Z
a
(s)]b ds . (4)

Note that the uncertainty on attenuation estimation and

QPE caused by the assumption of constant a(r) in (1) is

less than 20% as shown in Ryzhkov et al. (2014). In (2),

the only unknown for the AH estimation is the PIA be-

tween path (r0, r1). For polarimetric radars, PIA is usually

calculated from path integrated differential phase (DFDP)

over the path (r0, r1) (Bringi et al. 2001; Ryzhkov et al.

2014; Testud et al. 2000) by

PIA(r
0
, r

1
)5a[F

DP
(r

1
)2F

DP
(r

0
)]5aDF

DP
, (5)

where a is the ray-averaged ratio between AH and KDP.

After estimating AH, the rainfall rate can be calcu-

lated from R(AH) estimators constructed for GZ SPOL.

As documented in Ryzhkov et al. (2014), the relation

between R and AH is less sensitive to DSD variabilities

than R(ZH) and R(KDP) especially for S band, but it

is sensitive to radar wavelength and temperature. To

minimize the impact of these two factors, the R(AH)

estimators are fitted at 08–308C with a 18C interval for

GZ SPOL using a nonlinear least squares approach.

Taking the regression result at 208C (R5 2311:7A0:95
H )

as an example (Fig. 1), R can be well parameterized by

AH. The correlation coefficient (CC) between the R

values calculated from DSDs and those predicted from

R(AH) is close to 1 and the root-mean-square error (RMSE)

is low (1.99mmh21). The definition of CC, RMSE,
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normalized error (NE), and relative bias (RB) can be

found in Huang et al. (2018, 2020). The dependence of

R(AH) on temperature is also shown in Table 1. When

temperature changes from 08 to 308C, the exponent

keeps nearly constant (0.95) and the intercept raises

from 1361 to 2923. In practical applications, the R(AH)

estimator for a specific radar range gate is selected from

prefitted ones according to the temperature from the

interpolation of the sounding measurements. The sound-

ing station at Qingyuan (station number 59280) is within

the coverage of GZ SPOL, and it provides measurements

of temperature profiles twice a day.

The key for the attenuation-based QPE is the accu-

racy of the a used in (5). In the initial implementation

of the ZPHI algorithm (Testud et al. 2000) and the

attenuation-based QPE (Ryzhkov et al. 2014), a fixed

a is used. However, as revealed by the simulation using

DSD data (Fig. 2), the ratio ofAH toKDP (a) changes in

terms of mean raindrop size (denoted by mass-weighted

mean diameter,Dm) as well as temperature. For a specific

temperature, a generally decreases when Dm increases

(Ryzhkov et al. 2014). As a result, the mean a can vary

sweep by sweep or even ray by ray due to the spatial

variation of precipitation. Two methods, i.e., the method

based on the ZDR slope and the variational approach, for

a optimization are introduced below.

c. Estimating a using ZDR slope

As DSD properties can be indicated by the rainfall

type, which can be distinguished from the slope of ZDR

dependence on ZH, Wang et al. (2019) proposed to op-

timize a from a ZDR slope on a sweep-to-sweep basis.

For a radar sweep, a ZDR slope K is calculated from the

ZH and ZDR measurements. Then, a relation between

a and K, which is constructed from DSD simulations, is

adopted to calculate the a for the sweep. In our paper,

for the verification of the variational approach detailed

in the next subsection, we use the QPE results based on

the ZDR slope method similar to that in Wang et al.

(2019) as a benchmark.

In Wang et al. (2019), the bilinear a–K relation is

obtained from the DSD measurements in Oklahoma.

The DSD data with simulated ZH values between 20

and 50dBZ are separated into bins with 2-dBZ width.

Within each bin, the simulated ZDR values are sorted

and DSD data are separated into five groups with equal

sizes according to the sorted ZDR values. For each

group, the a value is calculated by �AH /�KDP, where

summation is performed over all DSDs; the K value is

the difference of the medianZDR values for twoZH bins

centered at 20 and 50dBZ divided by 30. Then, the bi-

linear a–K relation is obtained from the five a–K pairs.

TABLE 1. The R(AH) estimators and a values at different

temperatures (08, 108, 208, and 308C) for GZ SPOL.

Temperature (8C) R(AH) a 5 AH/KDP

0 R5 1361:3A0:95
H 0.036

10 R5 1789:5A0:95
H 0.027

20 R5 2311:7A0:95
H 0.021

30 R5 2922:8A0:95
H 0.016

FIG. 2. Scatterplot of the mass-weighted mean diameter Dm vs

AH/KDP at 08C (red), 108C (blue), 208C (green), and 308C (yellow)

for GZ SPOL simulated from the measurements of the 2DVD.

FIG. 1. Scatterplot of R directly calculated from the DSDs vs

those calculated fromR(AH) at 208C for GZ SPOL simulated from

the measurements of the 2DVD.
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In our paper, this method is applied to DSD measure-

ments in southChina, as shown in Fig. 3. Since the rainfall

in Guangzhou is more tropical than in Oklahoma, the

a–K pairs in Fig. 3 indicates that a larger a exists for a

specificK than that inOklahoma. It is also found that five

points (Fig. 3) are not enough for a robust relation fitting.

Thus, we manually adjust the relation from Oklahoma

(the red dashed line) for south China (the blue dashed

line), as follows:

a5 0:0552 0:75K, if K, 0:0467,

a5 0:02, if K$ 0:0467. (6)

With (6), we can now determine the a from the ZH–

ZDR pairs, for which the radar sweeps at 1.58 elevation
are used. The ZH–ZDR pairs are selected by the criteria:

1) data below 4km to mitigate potential contamination

from ice particles; 2) rhv . 0.98; 3) 24 , ZDR , 4 dB;

and 4) 20 , ZH , 50 dBZ. The ZH–ZDR pairs are sep-

arated into 16 ZH bins with 2-dBZ width from 20 to

50dBZ; within each bin, a median ZDR value is calcu-

lated if the sample size within the bin is larger than 200.

Then, the ZDR slope K is obtained from the linear re-

gression fitting of the median ZDR values in terms of the

ZH bin centers. Afterward, the optimized a is calculated

from K using the bilinear a–K relation, i.e., (6). Note

that if the sample size of the valid ZH–ZDR pairs in a

radar sweep is smaller than 30 000, the recently updated

a is used until enough samples are accumulated.

d. Estimating a using a variational approach

To get the a values on a ray-to-ray basis, a variational

approach is proposed in this paper. In the variational

approach, the forward operators are based on the relations

among the polarimetric variables. According to Gorgucci

et al. (1992), ZH (dBZ), ZDR (dB), and KDP (8 km21)

triplets reside within a limited three-dimensional space

for rainfall, andKDP can be well related to ZH and ZDR,

known as a self-consistent relation KDP(ZH, ZDR).

Similarly,AH (dBkm21) andADP (dBkm21) can also be

parameterized using ZH and ZDR, i.e., AH (ZH, ZDR)

and ADP(ZH, ZDR). These relations can be sensitive to

temperature. Thus, we fit these three relations at 08–308C
with a 18C interval using the 2DVDdata forGZSPOL. To

parameterize KDP, AH, and ADP from ZH and ZDR, the

relations are also selected from the prefitted ones accord-

ing to the temperature from the sounding measurements.

The examples of fittedKDP(ZH,ZDR),AH (ZH,ZDR), and

ADP(ZH, ZDR) at 208C are shown in Fig. 4, which can be

formulated as

K
DP

523:523 1027 3Z1:00
h

3 (Z3
DR 2 10:7Z2

DR 1 45:1Z
DR

2 90:4), (7)

A
H
522:523 1028 3Z1:07

h

3 (Z3
DR 2 8:9Z2

DR 1 26:7Z
DR

2 30:0), (8)

A
DP

5 1:033 10210 3Z0:99
h

3 (Z3
DR 1 36:2Z2

DR 2 183:9Z
DR

1 616:6), (9)

where Zh (mm6m23) equals to 100:1ZH . It can be found

all the KDP, AH, and ADP can be well parameterized by

ZH and ZDR, with most of the samples located near the

one-to-one lines, which means these relations are not

very sensitive to DSD variabilities.

With the above relations, the attenuation of a radar

sweep can be estimated ray by ray. We first assume a

state vector x containing the unattenuated ZH and ZDR

for the n-gate radar ray,

x5 [Z
H
(1), Z

H
(2), � � � , Z

H
(n), Z

DR
(1),

3Z
DR

(2), � � � , Z
DR

(n)]T. (10)

The measurement vector y containing the measured

reflectivity Zm
H , measured differential reflectivity Zm

DR,

and measured differential phase shift Fm
DP at each ray

can be expressed as

FIG. 3. The relation between factor a (dB per degree) andZDR

slope as simulated fromDSD observations collected by a 2DVD

in south China. Black triangles represent each simulated vari-

able value for the 0%–20%, 20%–40%, 40%–60%, 60%–80%,

80%–100% percentile groups of ZDR. The red dashed line

represents the bilinear fits from the DSDs in Oklahoma (Wang

et al. 2019). The blue dashed line is the adjusted relation for

south China.
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y
ZH

5 [Zm
H(1), Z

m
H(2), � � � , Zm

H(n)]
T,

y
ZDR

5 [Zm
DR(1), Z

m
DR(2), � � � , Zm

DR(n)]
T,

y
FDP

5 [Fm
DP(1), F

m
DP(2), � � � , Fm

DP(n)]
T
,

y5 [y
ZH
; y

ZDR
; y

FDP
] . (11)

Since KDP, AH, and ADP can be parameterized from

the unattenuated ZH and ZDR using (7)–(9), the

polarimetric measurements can be predicted from

x with the propagation effects (attenuation and

phase accumulation) considered in the integration

terms. This is known as the forward operator H(x).

Then, the difference between the predicted and

measured polarimetric measurements normalized

by the error covariance matrix R is known as the cost

function J,

J5 J
b
1 J

y
,

J
b
(x)5

1

2
(x2 x

b
)TB21(x2 x

b
) ,

J
y
(x)5

1

2
[H(x)2 y]TR21[H(x)2 y] . (12)

As the conventional cost function used in data assimi-

lation, xb and B are the a priori and its error covariance

matrix, and Jb is the corresponding cost function. In this

study, we do not use any a priori constraint for x and Jb is

set to 0 hereafter. In the error covariance matrix R for y,

we assume the errors ofZH,ZDR, andFDP are generally

FIG. 4. Scatterplots of the regression results of the parameterizations of (a)KDP, (b)AH, and (c)ADP in terms ofZH

and ZDR at 208C for GZ SPOL simulated from the measurements of the 2DVD. The text at the left top corner of the

subplots indicates the fitted relations.
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independent from each other and are independent from

gate to gate according to Hogan (2007) and Cao et al.

(2013). Thus, R is composed of diagonal matrices RZH
,

RZDR
, and RFDP

:

R5

2
664
R

ZH
O

R
ZDR

O R
FDP

3
775 (13)

with O representing the zero matrices.

To obtain the optimized polarimetric radar data, the

key process is to minimize the cost function J which

contains the nonlinear forward operatorH(x), in which

the limited-memory Broyden–Fletcher–Goldfarb–Shanno

algorithm for bound constrained large-scale nonlinear

optimization (LBFGS-B) is utilized (Byrd et al. 1995).

Since the raindrops are statistically oblate (Brandes

et al. 2002), nonnegative constraints are used for un-

attenuated ZDR in the optimization. The minimization

of a radar ray starts from a first guess, we use 30 dBZ

and 0.5 dB for all the ZH and ZDR of the ray. In later

iterations of the minimization, the value of the cost

function and its gradient in terms of x is required. The

gradient term with the a priori term omitted can be

written as

g(x)5HTR21[H(x)2 y] , (14)

where H is the Jacobian matrix of the forward operator.

In the minimization, it is obtained using automatic dif-

ferentiation (Hogan 2014).

To further increase the accuracy of the result, the

continuity of the precipitation is further introduced to

the variational analysis by using radial B-spline filters

in a similar way to Huang et al. (2018). The B-spline

filter can enforce the smoothness of the state variables,

which could mitigate the impact of random measure-

ment errors on the state variables. The formulas are

similar to those used in Huang et al. (2018) and not

repeated here.

After the minimization of the cost function, the un-

attenuated ZH and ZDR in the state vector are consid-

ered to be optimized for the ray. Then, the calculation

is continued for the next radar ray in the same sweep

until finished. Afterward, AH and KDP can be calcu-

lated from the optimized state variables using (7) and

(8). Then, the a is estimated for each radar ray by

�AH=�KDP where summation is performed for all

valid gates of the ray. In addition, to better compare

against the method based on the ZDR slope, we further

calculate a single a for the whole sweep by�AH=�KDP

where summation is performed for all valid gates of

the sweep.

e. Different configurations for attenuation-based
QPE

As documented in section 2b, the accuracy of attenuation-

based rainfall estimation is closely related to the accuracy of

a used for AH estimation. Six different configurations

for PIA calculation in (5) and the R(A) estimation are

considered for further comparison. The first one is to use

a values fitted from the DSD measurements (AH 5
aKDP). To consider the sensitivity of a to temperature,

the a values are fitted at 08–308Cwith a 18C interval, with

the examples shown in Table 1. In this configuration

(denoted as CONV), the coefficient a in (5) is chosen

from the fitted values according to the mean tempera-

ture of the radar sweep. In (5), another important issue is

the way to determine DFDP over the path (r0, r1). For

CONV, the FDP measurements are filtered by a nine-

gate running mean filter and the values of FDP(r0) and

FDP(r1) are the median of the FDP values at the seven

gates near the gates r0 and r1. The second configuration

(denoted by SLP) uses the same way to determine DFDP

as for CONV, and its a is determined from the ZDR

slope based on the a–K relation adjusted for south

China, i.e., (6).

The other four configurations involve the results

from the variational analysis described in section 2d.

In these four configurations, DFDP is obtained from

the difference of fDP between the gates r0 and r1, in

which fDP is predicted from the optimized state

variable of the variational retrieval. After the opti-

mization, the fDP is close toFDP but with the random

errors filtered out. In such a way, the DFDP is ex-

pected to result in better attenuation and rainfall rate

than the one used in CONV and SLP. For the selec-

tion of a, the third (fourth) configurations, denoted

as CP (SP), uses the same strategy as in the CONV

(SLP). For the fifth configuration, we use the sweep-

averaged a calculated from the variational approach.

This configuration is denoted as the VU (the variational

approach with a uniform a). For the last configuration,

the a estimated for each ray by the variational approach

is used. In such a way, the impact of DSD variabilities on

a is considered ray by ray, which is denoted as the VAZ

(the variational approach with a values optimized for

azimuths).

3. QPE evaluation

a. An example of attenuation estimation

On 28May 2016, a mesoscale convective system passed

over GZ SPOL. The plan position indicator (PPI) images

of the radar scan at 1.58 elevation at 0600 UTC are shown

in Fig. 5. The measuredZH, ZDR, andFDP are exhibited
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by Figs. 5a–c. Multiple quasi-linear convections are

distributed to the southeast of the radar site, and large

areas of stratiform precipitation exist to the northwest of

the convections. In the stratiform regions, the ZDR

values are generally low and the FDP values increase

slowly; while in the convective regions where rainfall

rate may be higher, the ZDR values are larger and the

FDP values increase faster. The PIA optimized by the

variational analysis from the radar site to each range

gate is shown in Fig. 5d. Due to the generally higher AH

associated with larger KDP, it can be found that the in-

crease of PIA is larger in the heavy rainfall regions than

the weak echo regions.

Figure 6 exhibits the further comparison of the a and

total PIA based on different configurations of QPE for

each ray of the scan in Fig. 5. To demonstrate the dif-

ferences of DSD properties for different ray, we define a

variable: the KDP-weighted ZDR (denoted as Zw
DR),

which is also shown in terms of azimuth in Fig. 6. The

formula of Zw
DR for an n-gate ray is

Zw
DR 5

�
n

i51

Z
DR

(i)3K
DP

(i)

�
n

i51

K
DP

(i)

, (15)

whereZDR(i) andKDP(i) are theZDR andKDP at the ith

gate calculated from the optimized state vector of the

variational approach. In the definition of Zw
DR, ZDR is an

indicator of mean raindrop size, which is a monotonically

increasing function ofDm if the gamma distribution with a

fixed shape parameter is assumed; KDP has a quasi-linear

relation with rainfall rate (Bringi and Chandrasekar 2001).

Thus,Zw
DR can be used as a proxy for rainfall rate-weighted

mean raindrop size, similar to that defined in Ryzhkov

et al. (2005a). In Fig. 6a, it is found that the ray-averaged

a values from the variational approach for the VAZ

(the green solid line) show large azimuthal variances.

The maximum value (;0.47 dB per degree) is approxi-

mately twice the minimum value (;0.23 dB per degree).

Despite the impact of measurement errors, most of the

FIG. 5. The PPI images of a precipitation event collected by GZ SPOL at 0600 UTC 28 May 2016 at the elevation

angle of 1.58. (a)–(c) The radar measurements of ZH, ZDR, and FDP, respectively; (d) the PIA calculated from the

optimized state variables of the variational analysis.
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variances are caused by the differences in the DSD

properties of different rays. The ray-averaged a values

showclear relationswith theZw
DR; thea values for theVAZ

generally decreases when theZw
DR increases in the azimuth.

This is consistent with decreasing in a with the increase

of Dm in Fig. 2, which may indicate that the impact of

azimuthal DSD variabilities can be accounted for by the

ray-averaged a values from the variational approach.

For the azimuthal angles between 1358 and 1908 where
most convective lines with larger ZDR exist, it can be

found that the ray-averaged a values are generally low

compared to the other regions. For the CONV, CP, SLP,

SP, and VU, constant a values are used for different

azimuths in the PIA calculation. The a determined from

the ZDR slope of the radar sweep for the SLP and SP

(red line) is about 0.033 dB per degree, and it is close to

the sweep-averaged value from the variational approach

for the VU (blue line). The a determined from DSD

statistics for the CONV and CP (black line) is generally

too low compared to the optimized values from the

other two methods.

In Fig. 6b, due to the differences in the a values, the

maximum PIA values for different QPE configurations

are not the same. The PIA values from the SP and VU

are close because of the close a values. For the azi-

muthal angles where most convective lines with larger

ZDR exist (1358–1908), the PIA values estimated for the

VAZ are generally smaller than the ones for the SP and

VU. This may indicate the potential overestimation of

PIA and the rainfall rate in the convective regions,

which is also pointed out by Wang et al. (2019).

b. QPE evaluation in seven cases

The comparison of radar-derived hourly rainfall against

the gauge measurements in seven cases in May–June 2016

is shown in Table 2. The performance of the attenuation-

based QPE approaches varies in different cases. With

no DSD uncertainty considered, the performance of the

CONV is generally the worst, with generally the lowest

CC, highest RMSE, highest NE, and highest RB in each

case. For the SLP, the a values are optimized by ZDR

slopes for radar sweeps, and the SLP results in better

rainfall estimates than the CONV. Compared to the

CONV and SLP, the DFDP obtained from the forward

operator of the variational approach is used for the

calculation of PIA in (5) by the CP and SP. As a result,

increases in CC values and decreases in RMSE values

can be found for the results of the SP (CP) compared to

those for the SLP (CONV). Similar to the SLP and SP,

the a values are optimized for each sweep for the VUwith

the variational approach applied. As a result, the perfor-

mance of the VU is also close to the SP. The accuracy of

FIG. 6. (a) The a used for the CONV/CP, SLP/SP, VU, and VAZ and (b) the corresponding

max PIA as functions of azimuth angle corresponding to the radar scan in Fig. 5. (c) The Zw
DR

for each ray is also shown.
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the VAZ is the best among the six approaches, with the

highest CC, the lowest RMSE, and the lowest NE, while

the RB values for the VAZ are close to those for the VU.

The good performance of the VAZ may be attributed to

the consideration of azimuthal DSD variabilities in the

ray-averaged a.

Since the performance of the SP is similar to that of

the VU, we compare the a values for the two configu-

rations in Fig. 7. These two configurations aim to con-

sidered the DSD properties in the optimization of a by

using the a–K relation (the SP) and the variational

analysis (the UV). It can be found that the general

trends of the a derived from the ZDR slope and the

sweep-averaged a from the variational analysis are

similar. For example, in the precipitation event between

0000 UTC 27 May and 1200 UTC 28 May, the a values

for the SP and UV are very close. But differences still

exist in the sweep-averaged a values from these two

configurations. This is mainly because of their different

retrieval basis. The ZDR-slope algorithm mainly in-

volves an assumption of the relation between the mean

raindrop size and the ZDR slopeK, while the variational

approach uses the relations among polarimetric vari-

ables which has accounted for most DSD variabilities.

Besides, in thea estimation fromZDR slope, thea estimates

only update when enough valid samples exist or ac-

cumulate, which results in the steps in the corre-

sponding a curves. This strategy mitigates the impact

of measurement errors while gains the impact of DSD

variabilities for the sweeps without enough samples

for a estimation. On the other hand, one sweep-

averaged a value is determined for one radar sweep in

the variational method. For the radar sweep with a small

sample size, larger a uncertainty may be caused by the

measurement errors. This could be the reason for the

larger sweep-to-sweep a variabilities between 0000 and

1200 UTC 9 May. However, considering the perfor-

mance of the UV, this uncertainty caused by measure-

ment errors is acceptable for the accuracy of QPE and is

not further processed here. In Fig. 7, the a values (about

0.023 dB per degree in all the cases) from DSD statistics

are also shown for comparison, which results in the

relatively worse performance of CONV and CP.

The performance of the VAZ is the best compared to

the other configurations denoted by Table 2. This is

mainly because the a value is optimized for each radar

ray for the VAZ, in which the DSD properties, e.g.,

smaller or larger mean raindrop size, in the radar ray are

considered, which has been revealed by Fig. 6. To fur-

ther illustrate this, it is useful to show the azimuthal and

temporal variabilities in the optimized a values and the

Zw
DR, which is an indicator of the mean raindrop size for

rays. The result for the precipitation event over the pe-

riod 0000UTC 27May–1200 UTC 28May 2016 is shown

in Fig. 8. Besides the temporal variabilities which have

been shown by the sweep-averaged a values used by the

TABLE 2. The comparisons of the hourly rainfall estimated based on four configurations and those derived from the rain gauges in

seven precipitation events in May–June 2016, including the correlation coefficient (CC), root-mean-squared error (RMSE), normalized

error (NE), and relative bias (RB).

CONV SLP CP SP VU VAZ CONV SLP CP SP VU VAZ

Time 0000 UTC 9 May–1200 UTC 10 May 1700 UTC 19 May–0300 UTC 21 May

CC 0.92 0.92 0.93 0.93 0.93 0.94 0.88 0.89 0.90 0.91 0.91 0.92

RMSE(mm) 3.70 3.63 3.57 3.51 3.50 3.17 2.49 2.39 2.28 2.16 2.04 1.99

NE 0.38 0.38 0.35 0.35 0.35 0.33 0.52 0.51 0.44 0.43 0.41 0.41

RB(%) 3.1 3.4 1.0 1.2 4.2 2.3 231.0 225.6 227.4 21.8 211.5 212.6

Time 0000 UTC 27 May–1200 UTC 28 May 0300 UTC 4 Jun–1100 UTC 4 Jun

CC 0.92 0.92 0.94 0.93 0.94 0.94 0.91 0.91 0.91 0.92 0.91 0.91

RMSE(mm) 1.88 1.81 1.77 1.65 1.63 1.54 3.73 3.64 3.70 3.62 3.57 3.38

NE 0.48 0.49 0.42 0.41 0.41 0.40 0.43 0.43 0.44 0.45 0.48 0.46

RB(%) 221.5 2.8 222.8 20.1 2.6 0.5 23.4 23.3 27.3 27.7 28.7 27.3

Time 1800 UTC 4 Jun–1300 UTC 5 Jun 0400 UTC 7 Jun–0900 UTC 7 Jun

CC 0.90 0.91 0.91 0.91 0.91 0.92 0.85 0.84 0.85 0.84 0.84 0.85

RMSE(mm) 2.05 2.11 2.00 2.09 2.06 1.93 4.07 4.19 4.02 4.18 4.53 3.79

NE 0.35 0.36 0.32 0.34 0.34 0.33 0.63 0.63 0.60 0.60 0.64 0.59

RB(%) 28.9 214.6 213.3 218.6 5.7 3.9 28.7 26.8 27.4 25.8 31.3 26.1

Time 2000 UTC 27 Jun–1100 UTC 28 Jun

CC 0.85 0.86 0.87 0.87 0.87 0.89

RMSE(mm) 3.39 3.44 3.23 3.26 3.35 2.88

NE 0.45 0.42 0.41 0.38 0.38 0.35

RB(%) 223.9 211.2 221.5 28.2 25.0 26.4
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VU (Fig. 7), the ray-optimized a values (Fig. 8a) also

show clear azimuthal variabilities for the whole event.

Comparing the a values optimized for the radar rays

(Fig. 8a) with the Zw
DR values (Fig. 8b), it can be found

that the larger a values are generally corresponding to

the lower Zw
DR, which indicates lower mean raindrop

sizes. This is consistent with the change of a in terms of

Dm in Fig. 2. If a uniform a is used for a whole sweep, the

rainfall rate tends to be overestimated (underestimated)

for the rays with larger (smaller) mean raindrop sizes.

By considering the azimuthal DSD variabilities (indicated

by the values of Zw
DR) in the optimization of a values, the

VAZ results more accurate rainfall estimation than the

other configurations with higher CC, lower RMSE and

lower NE values (Table 2).

To show the overall performance of rainfall estima-

tion in May–June 2016, Fig. 9 exhibits the comparisons

of radar-derived hourly rainfall using the above six QPE

configurations against the gaugemeasurements in all the

seven cases, in which the total sample size exceeds 40000.

Similar to the results shown in Table 2, the hourly rainfall

estimated by the CONV (Fig. 9a) has the worst perfor-

mance due to the utilization of fixed a values derived from

the statistics of the DSD observations; clear underestima-

tion (RB 5 210.4%) can also be found along with the

lowest CC (0.90), largest RMSE (2.75mm), and largest

NE (0.44). The results of the CP (Fig. 9c) are better due

to the utilization of DFDP from the variational analysis,

but underestimation still exists. Compared to the CONV

(Fig. 9a), the SLP (Fig. 9b) uses the a values optimized

FIG. 7. The time series of sweep-averaged a values (dB per degree) (blue solid lines) obtained by the variational

approach (i.e., the ones used in the UV) for the precipitation events shown in Table 2. The black (red) solid lines

represent the a values used in the CP and CONV (SLP and SP).
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by the ZDR slope, which results in the slightly lower

RMSE (2.70m), NE (0.43), and RB (24.5%). The im-

provement over the results from the SLP (Fig. 9a) can

also be found for those from the SP (Fig. 9d) for which

theDFDP has been optimized. This improvement is even

larger than the improvement of the SLP over the CONV

in our cases, especially according to the decreases of the

RMSE and NE. For the VU which also uses sweep-

averaged a values but from the variational analysis

(Fig. 9e), the performance is similar to that of the SP

(Fig. 9d), with similar CC, RMSE, and NE. In the

VAZ, due to the consideration of azimuthal DSD

variabilities (see Fig. 8a), the rainfall estimates have

the highest CC (0.92), lowest RMSE (2.35mm), lowest

NE, and lowest RB in the comparison against the

gauge measurements, which proves that the VAZ is

the best configuration for attenuation-based QPE.

At last, the verification of radar-derived total accu-

mulated rainfalls against the gauge measurements in the

cases in Table 2 is shown in Fig. 10. Since the CONV and

SLP have worse performance for the estimation of

hourly rainfalls than the other configurations according

to Fig. 9, their results for the total accumulated rainfalls

are not shown here. In Fig. 10, it is found that all the

three configurations (SP, VU, and VAZ) with a values

optimized can generally result in good total accumu-

lated rainfalls in May–June 2016, except some rainfall

underestimation far from the radar site. At these range

gates farther away from the radar site, the sampling

altitudes are higher. Due to the dominance of the

collision–coalescence process, the rainfall rate of south

China generally increases toward the ground (Liu and

Zipser 2013; Wu et al. 2018), which probably is the

reason for the underestimation. Besides, the terrain is

also higher in these regions far away from the radar site,

which could cause larger uncertainty. The improvement

of results based on theVAZover those from theVUand

the SP is not very significant, mainly because the impact

ofDSDuncertainty in different azimuths becomes lower

in the long-term accumulation of rainfall. In contrast to

the results of the SP, the VU, and the VAZ, the results

based on the CP showmore significant underestimation.

This is because the a values only fromDSD statistics are

too low for these cases.

4. Conclusions and discussion

In consideration of the good relation between R and

AH, the AH values estimated from the ZPHI algorithm

are used for rainfall estimation for GZ SPOL in south

China. A variational approach based on the relations

among polarimetric variables is proposed to optimize

the coefficient a in the ZPHI algorithm, which is com-

pared against an approach for a optimization based on a

slope of ZDR dependence on ZH. Six configurations for

attenuation-based rainfall estimation are designed to

show the performance of these approaches.

Generally, the hourly rainfall based on the CONV has

the worst performance with a significant underestima-

tion, mainly because the a values are derived from the

climatic measurements of 2DVD without consideration

of the DSD variabilities in specific cases. The SLP with

a optimized based on the ZDR slope for each radar

sweep shows better performance (a lower system bias)

than the CONV. Besides the accuracy of a, the random

errors inFDP also have an impact on the accuracy of the

estimation of PIA, which further affects the accuracy of

attenuation and rainfall estimation. Once the fDP opti-

mized by the variational approach is utilized for the

calculation of the DFDP in the CP (SP) configuration,

the CC between the radar-derived hourly rainfall against

the gauge measurements increases and the RMSE/NE

decreases compared to the results of the CONV (SLP).

However, the system bias generally has a minor change

according to the RB values. Similar to the SP, sweep-

averaged a values are derived from the variational ap-

proach, which is used for QPE in the VU. The VU has a

similar performance to the SP for rainfall estimation

(CC 5 0.92, RMSE 5 2.56mm, and NE 5 0.39). The

advantage of the variational approach is that an averaged

a value can be calculated for each radar ray instead of the

whole radar sweep. In such a way, the azimuthal DSD

variability can be mitigated in the a optimization and the

corresponding QPE. For the VAZ which uses the ray-

averaged a, the accuracy of the estimated hourly rainfall

FIG. 8. The ray-averaged (a) a and(b) Zw
DR for radar rays as

functions of time and azimuth in the precipitation event occurred

from 0000 UTC 27 May to 1200 UTC 28 May 2016.
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is further improved than the VU and SP. The RMSE

decreases about 8% of that for the VU (from 2.56 to

2.35mm). According to the above results, the VAZ

proves to be the best configuration for attenuation-

based QPE. The results from the VAZ can be also

compared against those obtained by the variational

approach based on the R–KDP relation used in Huang

et al. (2018). It is revealed that the results from the

VAZ have better performance with larger CC and

lower RMSE values, which is mainly because theR–AH

relation suffers less from the DSD variabilities.

Although the variational approach has a good perfor-

mance in the optimization of a and the rainfall estimation

shownby theprevious comparison, there are also limitations.

First, even the relations among the polarimetric variables

in Fig. 4 are generally solid, some outliers still exist es-

pecially in the parameterization of AH (Fig. 4b). Besides,

in an individual case, the DSD variabilities can still cause

FIG. 9. The joint distributions (shading) of the hourly rainfall amounts from the gauge measurements vs those

derived from the PPI scans of GZ SPOL at the elevation angle of 1.58 for all seven cases listed in Table 2.

The category sizes of the hourly rainfall amounts are 1 mm. (a)–(f) The results for the attenuation-based rainfall

estimation using the six different configurations: CONV, SLP, CP, SP, VU, and VAZ, respectively.
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different levels of uncertainty in the forward operator

based on the parameterization of KDP, AH, and ADP in

terms of ZH and ZDR, which will further affect the QPE

performance. This is probably why theQPE performance

in different rainfall events (Table 2) varies.

Since the forward operator involves ZH and ZDR, the

variational approach requires a good data quality of

polarimetric variables. In our study, the quality control

procedures are used to guarantee the accuracy of the

radar variables for the variational analysis. However,

currently, good data quality cannot always be expected

from all operational radars due to the common cali-

bration issues (Zittel et al. 2015), which may limit the

applicability of the variational approach. As shown by

Wang et al. (2019), the approach for a optimization

based on theZDR slope is less affected bymiscalibration,

even though the azimuthal changes of the system biases

of ZH and ZDR can still impact its accuracy. Currently,

the a optimization approach based on the ZDR slope is

more broadly applicable than the variational approach

considering the data quality issues. However, the results

of the VAZ demonstrate the potential room for improve-

ment by considering the azimuthal variability of a. It is also

possible for the variational approach to segment the rainfall

into finer subregions, for example, not only in azimuth but

also in different ranges. However, in the meantime, a finer

segmentation can reduce the sample size fora optimization

and the impact of the radar measurement errors can in-

crease. This topic is left for the future studies.

It is also worth mentioning that fixed standard de-

viations of the measurement errors of ZH (1 dB), ZDR

(0.2 dB), and FDP (28) are used for the variational

analysis according to the radar specification. This may

not be realistic since the measurement errors of ZH,

ZDR, and FDP can increase when the signal-to-noise

ratio or rhv decreases. It is not easy to accurately account

FIG. 10. Comparisons of the total accumulated rainfalls derived from the gauges and those from the PPI scans at the

elevation angle of 1.58 based on (a) the CP, (b) the SP, (c) the VU, and (d) the VAZ in all the cases listed in Table 2.

The positions of the circles show the gauge locations. The size of the circles denotes the total accumulated rainfall

from the rain gauges, and the color shading shows the relative bias of the radar-derived rainfalls. The gray shading

represents the terrain height. The radar site position is marked as black triangles.
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for this impact; however, this impact on retrieval is ex-

pected to be low because the measurement errors ofZH,

ZDR, and FDP are in the denominator terms of the cost

function and can partially cancel with each other when

they increase simultaneously.
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